Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Magn Reson Med ; 91(1): 39-50, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37796151

RESUMO

PURPOSE: To explore the potential of 3T deuterium metabolic imaging (DMI) using a birdcage 2 H radiofrequency (RF) coil in both healthy volunteers and patients with central nervous system (CNS) lesions. METHODS: A modified gradient filter, home-built 2 H volume RF coil, and spherical k-space sampling were employed in a three-dimensional chemical shift imaging acquisition to obtain high-quality whole-brain metabolic images of 2 H-labeled water and glucose metabolic products. These images were acquired in a healthy volunteer and three subjects with CNS lesions of varying pathologies. Hardware and pulse sequence experiments were also conducted to improve the signal-to-noise ratio of DMI at 3T. RESULTS: The ability to quantify local glucose metabolism in correspondence to anatomical landmarks across patients with varying CNS lesions is demonstrated, and increased lactate is observed in one patient with the most active disease. CONCLUSION: DMI offers the potential to examine metabolic activity in human subjects with CNS lesions with DMI at 3T, promising for the potential of the future clinical translation of this metabolic imaging technique.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Humanos , Deutério , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Razão Sinal-Ruído , Glucose
2.
Radiother Oncol ; 174: 52-58, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35817322

RESUMO

PURPOSE: To introduce and validate a newly developed deep-learning (DL) auto-segmentation algorithm for head and neck (HN) organs at risk (OARs) and to compare its performance with a published commercial algorithm. METHODS: A total of 864 HN cancer cases were available to train and evaluate a prototype algorithm. The algorithm is based on a fully convolutional network with combined U-Net and V-net. A Dice loss plus Cross-Entropy Loss function with Adam optimizer was used in training. For 75 validation cases, OAR sets were generated with three DL-based models (A: the prototype model trained with gold data, B: a commercial software trained with the same data, and C: the same software trained with data from another institution). The auto-segmented structures were evaluated with Dice similarity coefficient (DSC), Hausdorff distance (HD), voxel-penalty metric (VPM) and DSC of area under dose-volume histograms. A subjective qualitative evaluation was performed on 20 random cases. RESULTS: Overall trend was for the prototype algorithm to be the closest to the gold data by all five metrics. The average DSC/VPM/HD for algorithms A, B, and C were 0.81/84.1/1.6 mm, 0.74/62.8/3.2 mm, and 0.66/46.8/3.3 mm, respectively. 93% of model A structures were evaluated to be clinically useful. CONCLUSION: The superior performance of the prototype was validated, even when trained with the same data. In addition to the challenges of perfecting the algorithms, the auto-segmentation results can differ when the same algorithm is trained at different institutions.


Assuntos
Algoritmos , Aprendizado Profundo , Neoplasias de Cabeça e Pescoço , Planejamento da Radioterapia Assistida por Computador , Neoplasias de Cabeça e Pescoço/radioterapia , Humanos , Órgãos em Risco , Planejamento da Radioterapia Assistida por Computador/métodos , Reprodutibilidade dos Testes
3.
Med Phys ; 49(4): 2342-2354, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35128672

RESUMO

PURPOSE: This study developed and evaluated a fully convolutional network (FCN) for pediatric CT organ segmentation and investigated the generalizability of the FCN across image heterogeneities such as CT scanner model protocols and patient age. We also evaluated the autosegmentation models as part of a software tool for patient-specific CT dose estimation. METHODS: A collection of 359 pediatric CT datasets with expert organ contours were used for model development and evaluation. Autosegmentation models were trained for each organ using a modified FCN 3D V-Net. An independent test set of 60 patients was withheld for testing. To evaluate the impact of CT scanner model protocol and patient age heterogeneities, separate models were trained using a subset of scanner model protocols and pediatric age groups. Train and test sets were split to answer questions about the generalizability of pediatric FCN autosegmentation models to unseen age groups and scanner model protocols, as well as the merit of scanner model protocol or age-group-specific models. Finally, the organ contours resulting from the autosegmentation models were applied to patient-specific dose maps to evaluate the impact of segmentation errors on organ dose estimation. RESULTS: Results demonstrate that the autosegmentation models generalize to CT scanner acquisition and reconstruction methods which were not present in the training dataset. While models are not equally generalizable across age groups, age-group-specific models do not hold any advantage over combining heterogeneous age groups into a single training set. Dice similarity coefficient (DSC) and mean surface distance results are presented for 19 organ structures, for example, median DSC of 0.52 (duodenum), 0.74 (pancreas), 0.92 (stomach), and 0.96 (heart). The FCN models achieve a mean dose error within 5% of expert segmentations for all 19 organs except for the spinal canal, where the mean error was 6.31%. CONCLUSIONS: Overall, these results are promising for the adoption of FCN autosegmentation models for pediatric CT, including applications for patient-specific CT dose estimation.


Assuntos
Processamento de Imagem Assistida por Computador , Tomografia Computadorizada por Raios X , Algoritmos , Criança , Humanos , Processamento de Imagem Assistida por Computador/métodos , Radiometria , Tórax
4.
Med Phys ; 49(5): 3523-3528, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35067940

RESUMO

PURPOSE: Organ autosegmentation efforts to date have largely been focused on adult populations, due to limited availability of pediatric training data. Pediatric patients may present additional challenges for organ segmentation. This paper describes a dataset of 359 pediatric chest-abdomen-pelvis and abdomen-pelvis Computed Tomography (CT) images with expert contours of up to 29 anatomical organ structures to aid in the evaluation and development of autosegmentation algorithms for pediatric CT imaging. ACQUISITION AND VALIDATION METHODS: The dataset collection consists of axial CT images in Digital Imaging and Communications in Medicine (DICOM) format of 180 male and 179 female pediatric chest-abdomen-pelvis or abdomen-pelvis exams acquired from one of three CT scanners at Children's Wisconsin. The datasets represent random pediatric cases based upon routine clinical indications. Subjects ranged in age from 5 days to 16 years, with a mean age of 7 years. The CT acquisition, contrast, and reconstruction protocols varied across the scanner models and patients, with specifications available in the DICOM headers. Expert contours were manually labeled for up to 29 organ structures per subject. Not all contours are available for all subjects, due to limited field of view or unreliable contouring due to high noise. DATA FORMAT AND USAGE NOTES: The data are available on The Cancer Imaging Archive (TCIA_ (https://www.cancerimagingarchive.net/) under the collection Pediatric-CT-SEG. The axial CT image slices for each subject are available in DICOM format. The expert contours are stored in a single DICOM RTSTRUCT file for each subject. The contour names are listed in Table 2. POTENTIAL APPLICATIONS: This dataset will enable the evaluation and development of organ autosegmentation algorithms for pediatric populations, which exhibit variations in organ shape and size across age. Automated organ segmentation from CT images has numerous applications including radiation therapy, diagnostic tasks, surgical planning, and patient-specific organ dose estimation.


Assuntos
Abdome , Tomografia Computadorizada por Raios X , Abdome/diagnóstico por imagem , Adulto , Algoritmos , Criança , Feminino , Humanos , Masculino , Pelve/diagnóstico por imagem , Tomógrafos Computadorizados , Tomografia Computadorizada por Raios X/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...